Bayesian Models for Time Series with Covariates, Trend, Seasonality, Autoregression and Outliers
نویسنده
چکیده
Bayesian methods furnish an attractive approach to time series data analysis. This article proposes the forecasting models that can detect trend, seasonality, auto regression and outliers in time series data related to some covariates. Cumulative Weibull distribution functions for trend, dummy variables for seasonality, binary selections for outliers and latent autoregression for autocorrelated time series data are used for the data analysis. The Gibbs sampling, a Markov Chain Monte Carlo (MCMC) algorithm, is used for the parameter estimation. The proposed models are applied to vegetable price time series data in Thailand. According to the RMSE, MAPE and MAE criteria for model comparisons, the proposed models provide the best results compared to the exponential smoothing models, SARIMA models and the Bayesian models with trend, auto regression and outliers.
منابع مشابه
Assessment of Trend and Seasonality in Road Accident Data: An Iranian Case Study
Background Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملOutliers and interventions in INGARCH time series
We consider intervention effects generating various types of outliers in a linear count time seriesmodel which belongs to the class of observation driven models. Such models are widely used,because they extend the class of Gaussian linear time series models in a natural way. However,studies about effects of covariates and interventions have largely fallen behind due to the fact ...
متن کاملRegime Switching Vector Autoregressions: a Bayesian Markov Chain Monte Carl0 Approach
Many financial time series processes appear subject to periodic structural changes in their dynamics. Regression relationships are often not robust to outliers nor stable over time, whilst the existence of changes in variance over time is well documented. This paper considers a vector autoregression subject to pseudocyclical structural changes. The parameters of a vector autoregression are mode...
متن کاملStochastic Synthesis of Drouths for Reservoir Storage Design (RESEARCH NOTE).
Time series techniques are applied to Ghara-Aghaj flow records, in order to generate forecast values of the mean monthly river flows. The study of data and its correlogram shows the effect of seasonality and provide no evidence of trend. The autoregressive models of order one and two (AR1, AR2), moving average model of order one and ARMA (1,1) model are fitted to the stationary series, where th...
متن کامل